（1） 654321 を 1234 で割った余りは \square です。
（2） $496 \div 2+496 \div 4+496 \div 8+496 \div 16+496 \div 31$ $+496 \div 62+496 \div 124+496 \div 248+496 \div 496=$
（3） $6 \div 4 \div 2+72 \div 48 \div 12-57 \div 5 \div 19=$
（4） $3+1 \times 1 \div[6+3 \times 3 \div\{6+5 \times 5 \div(6+7)\}]$ を計算し，小数第 3 位を四捨五入した値は \square です

次の各問いに答えなさい。
（1） A さん， B さん， C さん， D さんの 4 人の貯金額を比べたところ， A さん， B さん， C さんの 3 人の平均は 7250 円， B さん， C さん， D さんの 3 人の平均は 6100 円， A さんと D さんの 2 人の合計は 16250 円でした。 A さんの貯金額はいくらですか。なお，この条件ではわからない場合は×と書きなさい。

図1 のように，ある 1 点を通る，半径がいずれも 4 cm の円が 4 つありま す。円の中心を結んだ図形が図 2 のように正方形になるとき，色のついた部分 の面積を求めなさい。ただし，円周率を 3.14 とします。

（3）同じ人数の班を中学生と高校生でそれぞれつくります。例えば，中学生 12人，高校生 15 人のとき，班の人数を 3 人とすると，中学生 4 つと高校生 5 つ の班ができます。

今，中学生 286 人，高校生 598 人で，同じ人数の班をそれぞれつくります。班の数をできるだけ少なくするとき，中学生と高校生でそれぞれいくつの班を つくることができますか。班の数をそれぞれ答えなさい。
（4）$\frac{5}{9}$ と $\frac{5}{8}$ の間にある，分子が 9 になる分数のうち，約分ができない分数の分母は \square です。 \square にあてはまる数を答えなさい。
（5） 1 から数字を
123456789101112．．．．．
と順に並べていきます。11番目の数字は「0」になります。105番目の数字を答えなさい。

3 図のように，直方体の形をした水そうの中に，鉄製で中身のつまった，水そうの縁より低い四角柱围が置いてあります。ざらに，底面が 1 辺の長さ 2 cm の正方形で上側があいている四角柱の容器龱を水そうに入れました。この容器困の高を は，鉄製の四角柱困の高さと水そうの深さの中間です。容器团はその周りに水が入っても浮いたりしません。ただし，容器（1）の底面や側面の厚さは考えないこと とします。容器因に直接入らないように，每秒一定の量の水を，水そうに注ぎまし た。グラフは，時間の経過にともなう，水そうの水面の高さの変化の様子を，水を注ぎ始めてから，水そうがちょうど満杯になるまで示したものです。次の各問い に答えなさい。

（1）容器（1）の容積は何 cm^{3} ですか。
（2）毎秒何 cm^{3} の水を注いでいますか。
（3）鉄製の四角柱（6）の底面積は何 cm^{2} ですか。
（4）水そうの底面積は何 cm^{2} ですか。
（5）水そうの水がちょうど満杯になるのは，水を注ぎ始めてから何秒後ですか。

4 次の各問いに答えなさい
（1） 1 辺の長さが 6 cm の正方形 ABCD があります。この正方形において， 2 辺 AB ， AD のまん中の点をそれぞれ I，J とするとき，三角形 AIJ の面積を求めなさい。

（2）＇ 1 辺の長さが 6 cm の立方体 $\mathrm{ABCD}-\mathrm{EFGH}$ について， 3 辺 $\mathrm{AB}, \mathrm{AD}, \mathrm{AE}$ のまん中の点をそれぞれI，J，K とします。また，正方形ABFE の対角線 BE のまん中の点をL，正方形 ADHE の対角線 DE のまん中の点を M とします。 このとき，三角柱 AIJ－KLM の体積を求めなさい。

（3） 1 辺の長さが 6 cm の立方体 8 個を図 3 のように積むと 1 辺の長さが 12 cm の立方体ができます。この 1 辺の長さが 12 cm の立方体の各面の正方形の十文字になっている点（図の・印のところ）を図4のように線で結ぶと，ある立体ができます。この立体の名称は正八面体といい，中学校で学ぶことになりま ず。さらに，この立体（正八面体）において，図 5 のように 8 本の辺のまん中 を線で結ぶと，ある立体ができます。この立体の体積を求めなさい。

（4） 1 辺の長さが 12 cm の立方体の体積は，（3）で求めた立体の体積の何倍にな るか求めなさい。

物事の処理の流れなどを表した図をフローチャート（流れ図）と言います。この問題のフローチャートでは，矢印の向きに処理を実行していきますが，条件によっ て，処理する内容を変えたり同じ処理を何度もくり返し実行したりすることもあり ます。図1，図2のフローチャートの中にある A や N に，ある整数を当てはめる ことで処理が始まり，表示される記号はテレビなどの画面に映し出されると考えて下さい。
（1）図1 は，A に当てはめた整数がある条件を満たすかどうかを判定することが できるフローチャートです。例えば A に 18 を当てはめると「O」が， 6 を当 てはめると「○」が，5を当てはめると「×」が表示されます。
（1）A に3001071015を当てはめたと きに，表示される記号を答えなさい。
（2）異なる2つの整数をそれぞれ A に当てはめてフローチャートの処理 を実行したとき，それぞれ表示され た記号を確認したあと，その 2 つ の整数の和をAに当てはめました。次のア，イ，ウのうち，常に正しいと言えるものを，すべて選びなさい。 ただし，常に正しいと言えるものか ない場合は，解答らんに「なし」と書きなさい。

ア： 2 つの整数が両方「×」と表示さ れたとき，その 2 つの整数の和 は「×」と表示される。

イ： 1 つの整数が「○」， 1 つの整数 が「○」と表示されたとき，その 2 つの整数の和は「○」と表示さ れる。

ウ： 2 つの整数が両方「○」と表示さ れたとき，その 2 つの整数の和 は「○」と表示される。
（2）図 2 は，N に当てはめた整数がある条件を満たすかどうかを判定することが できるフローチャートです。フローチャートの中の K には，始め 2 を当ては めます。そのあとの処理で K の値は 1 ずつ大きくなつていきます。
（1）Nに 51 から 60 までの整数 10個をそれぞれ当てはめたとき，「○」 と表示される整数をすべて答えな さい。

（3） 3 よりも大きい整数のうち， 3 つの連続する整数 a, b, c（ b は a より 1 大きく，c は a より 2 大きい整数）をそれぞれ N に当てはめたとき， a と c は「 O 」と表示され，b は「×」と表示されました。この条件を満たす 3 つの連続する整数は，どんなときでもまん中の b が必ず \square の倍数になります。 \square に当てはまる最も大きい整数を答えなさい。

$$
-9-
$$

